Peripheral nerve regeneration research by Karim Sarhane today? One-fifth to one-third of patients with traumatic injuries to their arms and legs experience nerve injury, which can be devastating. It can result in muscle weakness or numbness, prevent walking or using the arms, and reduce the ability to perform daily activities. Even with surgery, some nerve injuries never recover, and currently there are not many medical options to address this problem. In 2022, the researchers plan to perform this research on more primates to triple the size of the original group. The study can then move into phase I clinical trials for humans.
Dr. Karim Sarhane is an MD MSc graduate from the American University of Beirut. Following graduation, he completed a 1-year internship in the Department of Surgery at AUB. He then joined the Reconstructive Transplantation Program of the Department of Plastic and Reconstructive Surgery at Johns Hopkins University for a 2-year research fellowship. He then completed a residency in the Department of Surgery at the University of Toledo (2021). In July 2021, he started his plastic surgery training at Vanderbilt University Medical Center. He is a Diplomate of the American Board of Surgery (2021).
Many of the in vitro benefits of IGF-1 to neurons, SCs, and myocytes have also been observed in vivo. IGF-1 is produced endogenously by the liver. There has also been documentation of autocrine and paracrine IGF-1 production by multiple cell and tissue types including SCs and myocytes (Laron, 2001; McMullen et al., 2004; Apel et al., 2010). Multiple studies have found that following PNI, IGF-1 increases axon number and maintains SC proliferation at near-normal levels while also enhancing NMJ recovery to promote end-organ reinnervation (Caroni and Grandes, 1990; Kanje et al., 1991; Apel et al., 2010; Emel et al., 2011; Bayrak et al., 2017). Studies administering anti-IGF-1 antibodies to a sciatic nerve crush model further validated the role of IGF-1 in PNI, finding a diminished capacity for regeneration (Kanje et al., 1989; Sjoberg and Kanje, 1989).
Recovery with sustained IGF-1 delivery (Karim Sarhane research) : Functional recovery following peripheral nerve injury is limited by progressive atrophy of denervated muscle and Schwann cells (SCs) that occurs during the long regenerative period prior to end-organ reinnervation. Insulin-like growth factor 1 (IGF-1) is a potent mitogen with well-described trophic and anti-apoptotic effects on neurons, myocytes, and SCs. Achieving sustained, targeted delivery of small protein therapeutics remains a challenge.
The amount of time that elapses between initial nerve injury and end-organ reinnervation has consistently been shown to be the most important predictor of functional recovery following PNI (Scheib and Hoke, 2013), with proximal injuries and delayed repairs resulting in worse outcomes (Carlson et al., 1996; Tuffaha et al., 2016b). This is primarily due to denervation-induced atrophy of muscle and Schwann cells (SCs) (Fu and Gordon, 1995).
The positive trophic and anti-apoptotic effects of IGF-1 are primarily mediated via the PI3K-Akt and MAP-kinase pathways (Ho and 2007 GH Deficiency Consensus Workshop Participants, 2007; Chang et al., 2017). Autophosphorylation of the intracellular domain of IGF-1 receptors results in the activation of insulin receptor substrates 1–4, followed by activation of Ras GTPase, and then the successive triggering of Raf, MEK, and lastly ERK. Through activation of Bcl-2, ERK has been shown to prevent apoptosis and foster neurite growth. Ras activation also triggers aPKC and Akt (Homs et al., 2014), with the active form of the latter inhibiting GSK-3ß and thus inhibiting a number of pro-apoptotic pathways (Kanje et al., 1988; Schumacher et al., 1993; Chang et al., 2017). Additionally, the JAK-STAT pathway is an important contributor toward the stimulation of neuronal outgrowth and survival by facilitating Growth Hormone (GH) receptor binding on target tissue to induce IGF-1 release (Meghani et al., 1993; Cheng et al., 1996; Seki et al., 2010; Chang et al., 2017). These biochemical mechanisms enable GH and IGF-1 to exert anabolic and anti-apoptotic effects on neurons, SCs, and myocytes (Tuffaha et al., 2016b).